18一20岁一级毛片_国产综合av一区二区三区_A级毛片免费视频_国产亚洲一区在线_怡红院av一区二区三区_大地资源高清在线视频观看

新聞資訊
ChatGPT發(fā)展歷程、原理、技術(shù)架構(gòu)詳解和產(chǎn)業(yè)未來瀏覽數(shù):0
來源:陳巍談芯,本文將介紹ChatGPT的特點、功能、技術(shù)架構(gòu)、局限、產(chǎn)業(yè)應(yīng)用、投資機會和未來。

作者:陳巍 博士,作者本人曾擔(dān)任華為系自然語言處理( NLP )企業(yè)的首席科學(xué)家。

存算一體/GPU架構(gòu)和AI專家,高級職稱。中關(guān)村云計算產(chǎn)業(yè)聯(lián)盟,中國光學(xué)工程學(xué)會專家,國際計算機學(xué)會(ACM)會員,中國計算機學(xué)會(CCF)專業(yè)會員。曾任AI企業(yè)首席科學(xué)家、存儲芯片大廠3D NAND設(shè)計負(fù)責(zé)人,主要成就包括國內(nèi)首個大算力可重構(gòu)存算處理器產(chǎn)品架構(gòu)(已在互聯(lián)網(wǎng)大廠完成原型內(nèi)測),首個醫(yī)療領(lǐng)域?qū)S肁I處理器(已落地應(yīng)用),首個RISC-V/x86/ARM平臺兼容的AI加速編譯器(與阿里平頭哥/芯來合作,已應(yīng)用),國內(nèi)首個3D NAND芯片架構(gòu)與設(shè)計團隊建立(與三星對標(biāo)),國內(nèi)首個嵌入式閃存編譯器(與臺積電對標(biāo),已平臺級應(yīng)用)

 

相關(guān)專題:
《ChatGPT專題報告(1)》
1、行業(yè)專題研究:ChatGPT,開啟AI新紀(jì)元(2023) 2、從ChatGPT到生成式AI(Generative AI):人工智能新范式,重新定義生產(chǎn)力(2023) 3、海外ChatGPT專題:ChatGPT風(fēng)口已至,商業(yè)化落地加速(2023) 4、ChatGPT:開啟AI新紀(jì)元(2023) 5、ChatGPT引領(lǐng),關(guān)注AI產(chǎn)業(yè)2023新場景落地
《ChatGPT專題報告(2)》
1、ChatGPT:優(yōu)化對話的語言模型(2023) 2、ChatGPT:聊天機器人頂流,開啟自然語言處理領(lǐng)域新篇章 3、ChatGPT前景廣闊,巨頭入局有望加速AI落地(2023) 4、ChatGPT:振奮人形機器人應(yīng)用端錦繡前程

0,引言

先上參考網(wǎng)頁或論文。專業(yè)的讀者可以直接看paper。

ChatGPT: Optimizing Language Models for Dialogue ChatGPT: Optimizing Language Models for Dialogue
GPT論文:Language Models are Few-Shot Learners Language Models are Few-Shot Learners
InstructGPT論文:Training language models to follow instructions with human feedback Training language models to follow instructions with human feedback
huggingface解讀RHLF算法:Illustrating Reinforcement Learning from Human Feedback (RLHF) Illustrating Reinforcement Learning from Human Feedback (RLHF)
RHLF算法論文:Augmenting Reinforcement Learning with Human Feedback cs.utexas.edu/~ai-lab/p
TAMER框架論文:Interactively Shaping Agents via Human Reinforcement cs.utexas.edu/~bradknox
PPO算法:Proximal Policy Optimization Algorithms Proximal Policy Optimization Algorithms

今年12月1日,OpenAI推出人工智能聊天原型ChatGPT,再次賺足眼球,為AI界引發(fā)了類似AIGC讓藝術(shù)家失業(yè)的大討論。

據(jù)報道,ChatGPT在開放試用的短短幾天,就吸引了超過 100 萬互聯(lián)網(wǎng)注冊用戶。并且社交網(wǎng)絡(luò)流傳出各種詢問或調(diào)戲ChatGPT的有趣對話。甚至有人將ChatGPT比喻為“搜索引擎+社交軟件”的結(jié)合體,能夠在實時互動的過程中獲得問題的合理答案。

ChatGPT 是一種專注于對話生成的語言模型。它能夠根據(jù)用戶的文本輸入,產(chǎn)生相應(yīng)的智能回答。這個回答可以是簡短的詞語,也可以是長篇大論。其中GPT是Generative Pre-trained Transformer(生成型預(yù)訓(xùn)練變換模型)的縮寫。

通過學(xué)習(xí)大量現(xiàn)成文本和對話集合(例如Wiki),ChatGPT能夠像人類那樣即時對話,流暢的回答各種問題。(當(dāng)然回答速度比人還是慢一些)無論是英文還是其他語言(例如中文、韓語等),從回答歷史問題,到寫故事,甚至是撰寫商業(yè)計劃書和行業(yè)分析,“幾乎”無所不能。甚至有程序員貼出了ChatGPT進(jìn)行程序修改的對話。

ChatGPT也可以與其他AIGC模型聯(lián)合使用,獲得更加炫酷實用的功能。例如上面通過對話生成客廳設(shè)計圖。這極大加強了AI應(yīng)用與客戶對話的能力,使我們看到了AI大規(guī)模落地的曙光。

1,ChatGPT的傳承與特點



 

1.1 OpenAI家族

我們首先了解下OpenAI是哪路大神。

OpenAI總部位于舊金山,由特斯拉的馬斯克、Sam Altman及其他投資者在2015年共同創(chuàng)立,目標(biāo)是開發(fā)造福全人類的AI技術(shù)。而馬斯克則在2018年時因公司發(fā)展方向分歧而離開。

此前,OpenAI 因推出 GPT系列自然語言處理模型而聞名。從2018年起,OpenAI就開始發(fā)布生成式預(yù)訓(xùn)練語言模型GPT(Generative Pre-trained Transformer),可用于生成文章、代碼、機器翻譯、問答等各類內(nèi)容。

每一代GPT模型的參數(shù)量都爆炸式增長,堪稱“越大越好”。2019年2月發(fā)布的GPT-2參數(shù)量為15億,而2020年5月的GPT-3,參數(shù)量達(dá)到了1750億。

GPT家族主要模型對比

1.2 ChatGPT的主要特點

ChatGPT 是基于GPT-3.5(Generative Pre-trained Transformer 3.5)架構(gòu)開發(fā)的對話AI模型,是InstructGPT 的兄弟模型。ChatGPT很可能是OpenAI 在GPT-4 正式推出之前的演練,或用于收集大量對話數(shù)據(jù)。


 

ChatGPT的主要特點

OpenAI使用 RLHF(Reinforcement Learning from Human Feedbac,人類反饋強化學(xué)習(xí)) 技術(shù)對 ChatGPT 進(jìn)行了訓(xùn)練,且加入了更多人工監(jiān)督進(jìn)行微調(diào)。

此外,ChatGPT 還具有以下特征:

1)可以主動承認(rèn)自身錯誤。若用戶指出其錯誤,模型會聽取意見并優(yōu)化答案。

2)ChatGPT 可以質(zhì)疑不正確的問題。例如被詢問 “哥倫布 2015 年來到美國的情景” 的問題時,機器人會說明哥倫布不屬于這一時代并調(diào)整輸出結(jié)果。

3)ChatGPT 可以承認(rèn)自身的無知,承認(rèn)對專業(yè)技術(shù)的不了解。

4)支持連續(xù)多輪對話。

與大家在生活中用到的各類智能音箱和“人工智障“不同,ChatGPT在對話過程中會記憶先前使用者的對話訊息,即上下文理解,以回答某些假設(shè)性的問題。ChatGPT可實現(xiàn)連續(xù)對話,極大的提升了對話交互模式下的用戶體驗。

對于準(zhǔn)確翻譯來說(尤其是中文與人名音譯),ChatGPT離完美還有一段距離,不過在文字流暢度以及辨別特定人名來說,與其他網(wǎng)絡(luò)翻譯工具相近。

由于 ChatGPT是一個大型語言模型,目前還并不具備網(wǎng)絡(luò)搜索功能,因此它只能基于2021年所擁有的數(shù)據(jù)集進(jìn)行回答。例如它不知道2022年世界杯的情況,也不會像蘋果的Siri那樣回答今天天氣如何、或幫你搜索信息。如果ChatGPT能上網(wǎng)自己尋找學(xué)習(xí)語料和搜索知識,估計又會有更大的突破。

即便學(xué)習(xí)的知識有限,ChatGPT 還是能回答腦洞大開的人類的許多奇葩問題。為了避免ChatGPT染上惡習(xí), ChatGPT 通過算法屏蔽,減少有害和欺騙性的訓(xùn)練輸入。,查詢通過適度 API 進(jìn)行過濾,并駁回潛在的種族主義或性別歧視提示。

2,ChatGPT/GPT的原理

2.1 NLP

NLP/NLU領(lǐng)域已知局限包括對重復(fù)文本、對高度專業(yè)的主題的誤解,以及對上下文短語的誤解。

對于人類或AI,通常需接受多年的訓(xùn)練才能正常對話。NLP類模型不僅要理解單詞的含義,還要理解如何造句和給出上下文有意義的回答,甚至使用合適的俚語和專業(yè)詞匯。



 

NLP技術(shù)的應(yīng)用領(lǐng)域

本質(zhì)上,作為ChatGPT基礎(chǔ)的GPT-3或GPT-3.5 是一個超大的統(tǒng)計語言模型或順序文本預(yù)測模型。

2.2 GPT v.s.BERT

與BERT模型類似,ChatGPT或GPT-3.5都是根據(jù)輸入語句,根據(jù)語言/語料概率來自動生成回答的每一個字(詞語)。從數(shù)學(xué)或從機器學(xué)習(xí)的角度來看,語言模型是對詞語序列的概率相關(guān)性分布的建模,即利用已經(jīng)說過的語句(語句可以視為數(shù)學(xué)中的向量)作為輸入條件,預(yù)測下一個時刻不同語句甚至語言集合出現(xiàn)的概率分布。

ChatGPT 使用來自人類反饋的強化學(xué)習(xí)進(jìn)行訓(xùn)練,這種方法通過人類干預(yù)來增強機器學(xué)習(xí)以獲得更好的效果。在訓(xùn)練過程中,人類訓(xùn)練者扮演著用戶和人工智能助手的角色,并通過近端策略優(yōu)化算法進(jìn)行微調(diào)。

由于ChatGPT更強的性能和海量參數(shù),它包含了更多的主題的數(shù)據(jù),能夠處理更多小眾主題。ChatGPT現(xiàn)在可以進(jìn)一步處理回答問題、撰寫文章、文本摘要、語言翻譯和生成計算機代碼等任務(wù)。



 

BERT與GPT的技術(shù)架構(gòu)(圖中En為輸入的每個字,Tn為輸出回答的每個字)

3,ChatGPT的技術(shù)架構(gòu)

3.1 GPT家族的演進(jìn)

說到ChatGPT,就不得不提到GPT家族。

ChatGPT之前有幾個知名的兄弟,包括GPT-1、GPT-2和GPT-3。這幾個兄弟一個比一個個頭大,ChatGPT與GPT-3更為相近。



 

ChatGPT與GPT 1-3的技術(shù)對比

 

GPT家族與BERT模型都是知名的NLP模型,都基于Transformer技術(shù)。GPT-1只有12個Transformer層,而到了GPT-3,則增加到96層。

3.2 人類反饋強化學(xué)習(xí)

InstructGPT/GPT3.5(ChatGPT的前身)與GPT-3的主要區(qū)別在于,新加入了被稱為RLHF(Reinforcement Learning from Human Feedback,人類反饋強化學(xué)習(xí))。這一訓(xùn)練范式增強了人類對模型輸出結(jié)果的調(diào)節(jié),并且對結(jié)果進(jìn)行了更具理解性的排序。

在InstructGPT中,以下是“goodness of sentences”的評價標(biāo)準(zhǔn)。

  1. 真實性:是虛假信息還是誤導(dǎo)性信息?

  2. 無害性:它是否對人或環(huán)境造成身體或精神上的傷害?

  3. 有用性:它是否解決了用戶的任務(wù)?

3.3 TAMER框架

這里不得不提到TAMER(Training an Agent Manually via uative Reinforcement,評估式強化人工訓(xùn)練代理)這個框架。該框架將人類標(biāo)記者引入到Agents的學(xué)習(xí)循環(huán)中,可以通過人類向Agents提供獎勵反饋(即指導(dǎo)Agents進(jìn)行訓(xùn)練),從而快速達(dá)到訓(xùn)練任務(wù)目標(biāo)。





 

TAMER框架論文

引入人類標(biāo)記者的主要目的是加快訓(xùn)練速度。盡管強化學(xué)習(xí)技術(shù)在很多領(lǐng)域有突出表現(xiàn),但是仍然存在著許多不足,例如訓(xùn)練收斂速度慢,訓(xùn)練成本高等特點。特別是現(xiàn)實世界中,許多任務(wù)的探索成本或數(shù)據(jù)獲取成本很高。如何加快訓(xùn)練效率,是如今強化學(xué)習(xí)任務(wù)待解決的重要問題之一。

而TAMER則可以將人類標(biāo)記者的知識,以獎勵信反饋的形式訓(xùn)練Agent,加快其快速收斂。TAMER不需要標(biāo)記者具有專業(yè)知識或編程技術(shù),語料成本更低。通過TAMER+RL(強化學(xué)習(xí)),借助人類標(biāo)記者的反饋,能夠增強從馬爾可夫決策過程 (MDP) 獎勵進(jìn)行強化學(xué)習(xí) (RL) 的過程。



 

TAMER架構(gòu)在強化學(xué)習(xí)中的應(yīng)用

具體實現(xiàn)上,人類標(biāo)記者扮演對話的用戶和人工智能助手,提供對話樣本,讓模型生成一些回復(fù),然后標(biāo)記者會對回復(fù)選項打分排名,將更好的結(jié)果反饋回模型中,Agents同時從兩種反饋模式中學(xué)習(xí)——人類強化和馬爾可夫決策過程獎勵作為一個整合的系統(tǒng),通過獎勵策略對模型進(jìn)行微調(diào)并持續(xù)迭代。

在此基礎(chǔ)上,ChatGPT 可以比 GPT-3 更好的理解和完成人類語言或指令,模仿人類,提供連貫的有邏輯的文本信息的能力。

3.4 ChatGPT的訓(xùn)練

ChatGPT的訓(xùn)練過程分為以下三個階段:

第一階段:訓(xùn)練監(jiān)督策略模型

GPT 3.5本身很難理解人類不同類型指令中蘊含的不同意圖,也很難判斷生成內(nèi)容是否是高質(zhì)量的結(jié)果。為了讓GPT 3.5初步具備理解指令的意圖,首先會在數(shù)據(jù)集中隨機抽取問題,由人類標(biāo)注人員,給出高質(zhì)量答案,然后用這些人工標(biāo)注好的數(shù)據(jù)來微調(diào) GPT-3.5模型(獲得SFT模型, Supervised Fine-Tuning)。

此時的SFT模型在遵循指令/對話方面已經(jīng)優(yōu)于 GPT-3,但不一定符合人類偏好。



 

ChatGPT模型的訓(xùn)練過程

第二階段:訓(xùn)練獎勵模型(Reward Mode,RM)

這個階段的主要是通過人工標(biāo)注訓(xùn)練數(shù)據(jù)(約33K個數(shù)據(jù)),來訓(xùn)練回報模型。在數(shù)據(jù)集中隨機抽取問題,使用第一階段生成的模型,對于每個問題,生成多個不同的回答。人類標(biāo)注者對這些結(jié)果綜合考慮給出排名順序。這一過程類似于教練或老師輔導(dǎo)。

接下來,使用這個排序結(jié)果數(shù)據(jù)來訓(xùn)練獎勵模型。對多個排序結(jié)果,兩兩組合,形成多個訓(xùn)練數(shù)據(jù)對。RM模型接受一個輸入,給出評價回答質(zhì)量的分?jǐn)?shù)。這樣,對于一對訓(xùn)練數(shù)據(jù),調(diào)節(jié)參數(shù)使得高質(zhì)量回答的打分比低質(zhì)量的打分要高。

第三階段:采用PPO(Proximal Policy Optimization,近端策略優(yōu)化)強化學(xué)習(xí)來優(yōu)化策略。

PPO的核心思路在于將Policy Gradient中On-policy的訓(xùn)練過程轉(zhuǎn)化為Off-policy,即將在線學(xué)習(xí)轉(zhuǎn)化為離線學(xué)習(xí),這個轉(zhuǎn)化過程被稱之為Importance Sampling。這一階段利用第二階段訓(xùn)練好的獎勵模型,靠獎勵打分來更新預(yù)訓(xùn)練模型參數(shù)。在數(shù)據(jù)集中隨機抽取問題,使用PPO模型生成回答,并用上一階段訓(xùn)練好的RM模型給出質(zhì)量分?jǐn)?shù)。把回報分?jǐn)?shù)依次傳遞,由此產(chǎn)生策略梯度,通過強化學(xué)習(xí)的方式以更新PPO模型參數(shù)。

如果我們不斷重復(fù)第二和第三階段,通過迭代,會訓(xùn)練出更高質(zhì)量的ChatGPT模型。

4,ChatGPT的局限

只要用戶輸入問題,ChatGPT 就能給予回答,是否意味著我們不用再拿關(guān)鍵詞去喂 Google或百度,就能立即獲得想要的答案呢?

盡管ChatGPT表現(xiàn)出出色的上下文對話能力甚至編程能力,完成了大眾對人機對話機器人(ChatBot)從“人工智障”到“有趣”的印象改觀,我們也要看到,ChatGPT技術(shù)仍然有一些局限性,還在不斷的進(jìn)步。

1)ChatGPT在其未經(jīng)大量語料訓(xùn)練的領(lǐng)域缺乏“人類常識”和引申能力,甚至?xí)槐菊?jīng)的“胡說八道”。ChatGPT在很多領(lǐng)域可以“創(chuàng)造答案”,但當(dāng)用戶尋求正確答案時,ChatGPT也有可能給出有誤導(dǎo)的回答。例如讓ChatGPT做一道小學(xué)應(yīng)用題,盡管它可以寫出一長串計算過程,但最后答案卻是錯誤的。

2)ChatGPT無法處理復(fù)雜冗長或者特別專業(yè)的語言結(jié)構(gòu)。對于來自金融、自然科學(xué)或醫(yī)學(xué)等非常專業(yè)領(lǐng)域的問題,如果沒有進(jìn)行足夠的語料“喂食”,ChatGPT可能無法生成適當(dāng)?shù)幕卮稹?/p>

3)ChatGPT需要非常大量的算力(芯片)來支持其訓(xùn)練和部署。拋開需要大量語料數(shù)據(jù)訓(xùn)練模型不說,在目前,ChatGPT在應(yīng)用時仍然需要大算力的服務(wù)器支持,而這些服務(wù)器的成本是普通用戶無法承受的,即便數(shù)十億個參數(shù)的模型也需要驚人數(shù)量的計算資源才能運行和訓(xùn)練。,如果面向真實搜索引擎的數(shù)以億記的用戶請求,如采取目前通行的免費策略,任何企業(yè)都難以承受這一成本。因此對于普通大眾來說,還需等待更輕量型的模型或更高性價比的算力平臺。

4)ChatGPT還沒法在線的把新知識納入其中,而出現(xiàn)一些新知識就去重新預(yù)訓(xùn)練GPT模型也是不現(xiàn)實的,無論是訓(xùn)練時間或訓(xùn)練成本,都是普通訓(xùn)練者難以接受的。如果對于新知識采取在線訓(xùn)練的模式,看上去可行且語料成本相對較低,但是很容易由于新數(shù)據(jù)的引入而導(dǎo)致對原有知識的災(zāi)難性遺忘的問題。

5)ChatGPT仍然是黑盒模型。目前還未能對ChatGPT的內(nèi)在算法邏輯進(jìn)行分解,因此并不能保證ChatGPT不會產(chǎn)生攻擊甚至傷害用戶的表述。

當(dāng)然,瑕不掩瑜,有工程師貼出了要求ChatGPT寫verilog代碼(芯片設(shè)計代碼)的對話。可以看出ChatGPT水平已經(jīng)超出一些verilog初學(xué)者了。

5,ChatGPT的未來改進(jìn)方向

5.1 減少人類反饋的RLAIF

2020年底,OpenAI前研究副總裁Dario Amodei帶著10名員工創(chuàng)辦了一個人工智能公司Anthropic。Anthropic 的創(chuàng)始團隊成員,大多為 OpenAI 的早期及核心員工,參與過OpenAI的GPT-3、多模態(tài)神經(jīng)元、人類偏好的強化學(xué)習(xí)等。

2022年12月,Anthropic再次發(fā)表論文《Constitutional AI: Harmlessness from AI Feedback》介紹人工智能模型Claude。(arxiv.org/pdf/2212.0807)



 

CAI模型訓(xùn)練過程

Claude 和 ChatGPT 都依賴于強化學(xué)習(xí)(RL)來訓(xùn)練偏好(preference)模型。CAI(Constitutional AI)也是建立在RLHF的基礎(chǔ)之上,不同之處在于,CAI的排序過程使用模型(而非人類)對所有生成的輸出結(jié)果提供一個初始排序結(jié)果。

CAI用人工智能反饋來代替人類對表達(dá)無害性的偏好,即RLAIF,人工智能根據(jù)一套constitution原則來評價回復(fù)內(nèi)容。




 

5.2 補足數(shù)理短板

ChatGPT雖然對話能力強,但是在數(shù)理計算對話中容易出現(xiàn)一本正經(jīng)胡說八道的情況。

計算機學(xué)家Stephen Wolfram 為這一問題提出了解決方案。Stephen Wolfram 創(chuàng)造了的 Wolfram 語言和計算知識搜索引擎 Wolfram | Alpha,其后臺通過Mathematica實現(xiàn)。




 

ChatGPT與Wolfram | Alpha結(jié)合處理梳理問題

在這一結(jié)合體系中,ChatGPT 可以像人類使用 Wolfram|Alpha 一樣,與 Wolfram|Alpha “對話”,Wolfram|Alpha 則會用其符號翻譯能力將從 ChatGPT 獲得的自然語言表達(dá)“翻譯”為對應(yīng)的符號化計算語言。在過去,學(xué)術(shù)界在 ChatGPT 使用的這類 “統(tǒng)計方法” 和 Wolfram|Alpha 的 “符號方法” 上一直存在路線分歧。但如今 ChatGPT 和 Wolfram|Alpha 的互補,給NLP領(lǐng)域提供了更上一層樓的可能。

ChatGPT 不必生成這樣的代碼,只需生成常規(guī)自然語言,然后使用 Wolfram|Alpha 翻譯成精確的 Wolfram Language,再由底層的Mathematica進(jìn)行計算。

5.3 ChatGPT的小型化

雖然ChatGPT很強大,但其模型大小和使用成本也讓很多人望而卻步。

有三類模型壓縮(model compression)可以降低模型的大小和成本。

第一種方法是量化(quantization),即降低單個權(quán)重的數(shù)值表示的精度。比如Tansformer從FP32降到INT8對其精度影響不大。

第二種模型壓縮方法是剪枝(pruning),即刪除網(wǎng)絡(luò)元素,包括從單個權(quán)重(非結(jié)構(gòu)化剪枝)到更高粒度的組件如權(quán)重矩陣的通道。這種方法在視覺和較小規(guī)模的語言模型中有效。

第三種模型壓縮方法是稀疏化。例如奧地利科學(xué)技術(shù)研究所 (ISTA)提出的SparseGPT (arxiv.org/pdf/2301.0077)可以將 GPT 系列模型單次剪枝到 50% 的稀疏性,而無需任何重新訓(xùn)練。對 GPT-175B 模型,只需要使用單個 GPU 在幾個小時內(nèi)就能實現(xiàn)這種剪枝。



 

SparseGPT 壓縮流程

6 ChatGPT的產(chǎn)業(yè)未來與投資機會

6.1 AIGC

說到ChaGPT不得不提AIGC。

AIGC即利用人工智能技術(shù)來生成內(nèi)容。與此前Web1.0、Web2.0時代的UGC(用戶生產(chǎn)內(nèi)容)和PGC(專業(yè)生產(chǎn)內(nèi)容)相比,代表人工智能構(gòu)思內(nèi)容的AIGC,是新一輪內(nèi)容生產(chǎn)方式變革,而且AIGC內(nèi)容在Web3.0時代也將出現(xiàn)指數(shù)級增長。

ChatGPT 模型的出現(xiàn)對于文字/語音模態(tài)的 AIGC 應(yīng)用具有重要意義,會對AI產(chǎn)業(yè)上下游產(chǎn)生重大影響。

6.2 受益場景

從下游相關(guān)受益應(yīng)用來看,包括但不限于無代碼編程、小說生成、對話類搜索引擎、語音陪伴、語音工作助手、對話虛擬人、人工智能客服、機器翻譯、芯片設(shè)計等。從上游增加需求來看,包括算力芯片、數(shù)據(jù)標(biāo)注、自然語言處理(NLP)等。



 

大模型呈爆發(fā)態(tài)勢(更多的參數(shù)/更大的算力芯片需求)

隨著算法技術(shù)和算力技術(shù)的不斷進(jìn)步,ChatGPT也會進(jìn)一步走向更先進(jìn)功能更強的版本,在越來越多的領(lǐng)域進(jìn)行應(yīng)用,為人類生成更多更美好的對話和內(nèi)容。

最后,作者問存算一體技術(shù)在ChatGPT領(lǐng)域的地位(作者本人目前在重點推進(jìn)存算一體芯片的產(chǎn)品落地),ChatGPT想了想,大膽的預(yù)言存算一體技術(shù)將在ChatGPT芯片中占據(jù)主導(dǎo)地位。(深得我心)

來源:https://zhuanlan.zhihu.com/p/590655677



 

服務(wù)熱線:

0755-26727961 / 26727962 / 26727968

地址:深圳市南山區(qū)科技南十路6號航天科技創(chuàng)新研究院大廈B507-508室
郵箱:Sales@jhongtech.com

Copyright © 深圳市嘉鴻時代科技有限公司
粵ICP備16109508號
主站蜘蛛池模板: 国产精品伦一区二区三区妓女_caoporn人人_性一交一乱一色一欲_免费在线看黄_国产乱妇乱子视频_日韩男女在线_韩日三级视频_www.色小妹.com | 欧亚一级片_亚洲成人av免费在线观看_亚洲人成网亚洲欧洲无码_国产一级二级在线_狼群社区视频www_超碰免费在线97_青青午夜_国产成人无码A区在线观看导航 | 欧美一级黄色片视频_欧美bdsm精品调教视频_午夜极品_国产精品久久久久久久久潘金莲_在线观看老湿视频福利_日韩有码在线播放_精品二区视频_好爽啊中文字幕一区二区久久 | 91性高潮久久久久久久_五月花激情网_二区三区国产_3344在线永久观看视频播放_一区二区三区四区AV_国产爆初菊在线观看免费视频网站_日韩在线一区二区三区免费视频_久久国产a | 欧美大片a片免费看视频频_麻豆精品影院_国产精品手机视频一区二区_久久懂色精品99综一区合_久久综合干_国产在线视频不卡二_国产天堂久久综合_79av国产 | 好看的一级毛片_91视频进入_爱爱视频免费_xxx国产老太婆视频_久久精品午夜_日本在线不卡观看_最新高清无码专区在线视频_а天堂最新版中文在线 | 亚洲av网站_人人干日日_44444kk在线观看三免费_亚洲啪啪av_专干老熟女视频在线观看_国产孕妇a片全部精品_99热爱久久99热爱九九热爱_三级黄在线观看 亚洲精品久久久蜜桃网尤妮丝_日日日日日_亚洲一区h_国产网站在线免费观看_精品999日本久久久影院_女教师在办公室被强在线播放_在线视频久_夜夜骑天天射 | 中国黄色片在线观看_免费人成黄页在线观看忧物_国产精品300页_91看毛片_国产欧美综合一区_日本中文字幕高清_肉体xxxxxⅰ8xxxx少妇_AV国内精品久久久久影院 | 九色亚洲_国产色a_日本高清免费在线_77成人影院_中文字幕日本人妻久久久免费_绯色av蜜臀av_色999日韩_中国丰满少妇熟乱xxxx | xvideos在线观看_久久久青青青_日韩欧洲国产亚洲中文_亚洲国产91在线_粗一硬一长一进一爽一A级_国产毛片18片毛一级特黄_欧美国产精品三区一级一级_成人精品一区二区三区在线观看 | 99热国内精品_www.久久爱.com_a级在线播放_日本久久综合视频_一本一本久久aa精品综合_亚洲性爰_日本另类αv欧美另类aⅴ_国产九九精品 | 精品亚洲网_av艹逼_曰本一级毛片_在线视频一区少妇露脸福利在线_三级黄色在线看_欧洲亚洲精品在线_91av官网_午夜av免费观看 | 97久久久精品综合88久久_国产一区二区精品久久久不卡蜜臀_午夜小影院_欧美精品亚洲_精品日产卡一卡二卡国色天香_精品国产网址_xvideos一色全网免费视频_国产亚洲精品自在久久 | 日韩经典AV在线观看_中文无码日韩欧免费视频_捆绑白丝粉色jk震动捧喷白浆_日本慰安所一级毛片在线播放_亚洲精品久久久乳夜夜欧美_97浪潮性色91久久久美川_亚洲蜜桃精久久久久久久久久久久_最新中文字幕av | 成人国产视频在线_中文字幕丝袜精品久久_一个色影院_久久亚洲中文字幕无码_久久色网_欧美亚洲日本一区二区_91高清视频免费观看_国产69精品久久久久久久久久 | AV中文字幕潮喷人妻系列_国产一级毛片高清_国产在线观看1_欧美激情一区二区三区高清视频_国产精品爽黄69天堂a_91福利视频在线_juliaann熟妇五十欧美_97超碰人人在线观看 | 在线观看免费观看视频_免费理论片手机在线播放_99久久精品费精品国产一区二_日韩一欧美内射在线观看_久草色在线_国产精品乱码一区二区三区四川人_日日草夜夜爽_国产成人免费视频网站视频社区 | 中文字幕无线精品亚洲乱码一区_免费一级高清毛片_高清久久久久_日韩国产欧美综合_国产精品色哟哟网站_亚洲黄色高清视频_av在线资源播放_久久乐视频 | 麻豆一二三专区入口_免费h网站在线观看的_国产成人亚洲精品青草_欧美顶级METART裸体全部_日韩在线观看网址_A级免费黄色视频_久久久免费看_国产真人无码作爱视频免费 | 午夜欧美精品久久久久久久_欧美XXXX黑人又粗又长_久久伊人热_久久综合国产_亚州精品中文_国产精品自拍区_九色最新网治_中文字幕日产乱码一二三区 | 亚洲视频欧美视频_欧美性欧美巨大黑白大战_国产伦子系列沙发午睡_日本xxxx在线观看_女同一区二区_国产黄色激情视频_国产精品午夜爆乳美女视频_国产麻传媒精品国产AV | 男女无套内射白将在线线国语_久久精品噜噜噜成人_国产片一区二区_91污视频_69午夜视频_国产精品一区二区三区四区在线观看_一级黄色播放_av在线无码专区一区 | 亚洲国产另类久久久精品极度_国产精品无码专区第一页_国产精品色综合一区二区三区_国产精品VR专区_国产99精品在线_91影视网_亚洲日本看视频_亚洲avav国产av综合av | 益日韩欧群交P片内射中文_1313午夜精品理论片_综合爱爱网_纯肉无遮挡h肉动漫在线观看3d_男人的天堂久久精品_99久久精品午夜一区二区_亚洲七七久久桃花影院_国产91色在线亚洲 | 国产一二三四在线_18禁超污无遮挡无码免费游戏_精品美女久久久_久久九九99视频_成人av中文字幕_日韩一区二区福利_亚洲.国产.中文慕字在线_天堂中文资源库官网 | 国产高清免费在线_国产美女久久久久_毛片在线不卡_亚洲在线一区二区_超碰免费视_24小时日本在线视频_国产啪视频1000部免费_精品国产一区二区三区四区阿崩 | 在线观看91精品国产麻豆_少妇p毛又多水又大又黑_超碰91人人_segui88久久综合_国产JIZZJIZZ麻豆全部免费_国产精品一区二区三区av麻_色多多污_四虎www4hv | 91久久久久久亚洲精品禁果_午夜福利123_国产一二区免费视频_国产99久久久久久免费看农村_国产成人精品国内自产拍_91在线看看_日韩免费观看视频_熟妇人妻AV无码一区二区三区 | 粉色视频成人免费看片视频_国产suv精品一区二区四区99_97SE狠狠狠狠狼鲁亚洲综合色_成年美女色黄网站视频网站_四虎永久免费地址_麻妃在线_亚洲精品中文字幕中文字幕_一二三四在线观看免费高清中文在线观看 | 国产欧美亚洲一级激情在线观看_亚洲情视频_国产性猛交_国产又色又刺激高潮免费视频_在线亚洲天堂_久久精品人人做人人爽97_国产精品爽爽爽爽爽爽免费观看_中文字幕在线视频免费 | av在线免费观看网址_国产传媒果冻天美传媒_亚洲AV片不卡无码久久嫩模_绯色av蜜臀vs少妇_色欲综合久久中文字幕网_脱老师内裤进入gif视频_欧美精品,久久综合_欧美日韩中文字幕在线观看 | 日本精品一区二区三区高清_欧美成人中文字幕_日日摸夜夜骑_少妇一级淫片免费_国产男女无遮挡猛进猛出_国产综合av_国产成人精品自拍_成人性色生活片免费看爆迷你毛片 | 日本xxxx小便xxxx偷拍_软萌小仙自慰喷白浆_免费在线观看黄片毛片a_青草一区_久久久久久久久久久一区二区_欧美日本午夜一区二区_国产黄a三级三级三级av在线看_www夜夜操com | 黄a免费视频_久久精品国产亚洲一区二区_国产又爽又黄又无遮挡的激情视频_爱福利一区_亚洲国内精品在线_日韩aaa视频_久久无码免费视频播放_久久精品人人槡人妻人 | 婬荡少妇21P_亚洲av永久无码精品蜜芽_亚洲欧洲精品在线_亚洲福利在线观看_国产肛交视频_欧美国产免费_免费视频久久久久久久_久久久福利视频 | 最爱高潮全过程免费的视频_日韩免费无码不卡夜夜爽_国产乱子伦一区二区三区国色天香_日日操天天操_中文久久久久久_91欧美激情一区二区三区成人_男男做喘息gv奶白小受动图_国产三及片网站 狠狠搞综合_国产精品欧美亚洲制服_久久久性视频_国产调教性奴在线观看w_狠狠色婷婷久久一区二区三区麻豆_www.青青草_超碰在线资源站_草在线免费观看 | 国产欧美日韩_黄色成人网站免费无码av_亚洲AV日韩综合一区二区_大象一区_国产成人无码牲交免费视频_久久久久欧美激情饼干_日韩一区二区三区视频在线播放_国产精品hd | 精品无码AV无码免费专区_成人免费A级毛片_欧洲精品一区二区三区久久_精品人伦一区二区三_97SE亚洲国产综合在线_日本一本不卡_91嫩草嫩草_鲁死你资源站亚洲AV | 亚洲人成在线免费观看_男女扒开双腿猛进入免费看污_国产公妇仑乱在线观看_亚洲va欧美va国产综合先锋_国产精品一区二区av片_久久国产精品欧美_久久午夜国产精品www护士让_玩偶姐姐免费 | 高h粗口_日本黄色三级网站_黄色av大全_少妇饥渴偷公乱第一章全文_精品免费久久久国产一区_国产乱人_国产精品久久久国产盗摄_欧美亚洲人成在线 | 天天干天天插_成人午夜性成交_久久九九99_伊人视屏_99热久草_泷泽萝拉全AV在线观看_亚洲aaa视频_台湾一级毛片永久免费 |